grokking-algorithms/chapter12/loaves.py

57 lines
1.3 KiB
Python
Raw Normal View History

2024-01-17 18:14:00 +00:00
import logging
from dataclasses import dataclass
import numpy as np
logging.basicConfig(
level=logging.DEBUG,
format="%(asctime)s %(levelname)s %(message)s",
datefmt="%H:%M:%S",
)
logger = logging.getLogger(__name__)
@dataclass
class Point:
identifier: str
weather: int
is_weekend: bool
is_game_on: bool
sold: int = 0
distance: int = 0
@property
def array(self):
return np.array([self.weather, int(self.is_weekend), int(self.is_game_on)])
def knn(point: Point, neighbours):
for neighbour in neighbours:
neighbour.distance = np.linalg.norm(point.array - neighbour.array)
logger.debug(f"{neighbour.identifier}: {neighbour.distance}")
2024-01-17 20:30:48 +00:00
return sorted(neighbours, key=lambda x: x.distance)[:K]
2024-01-17 18:14:00 +00:00
neighbours = [
2024-01-17 18:14:41 +00:00
Point("A", 5, True, False, 300),
Point("B", 3, True, True, 225),
Point("C", 1, True, False, 75),
Point("D", 4, False, True, 200),
Point("E", 4, False, False, 150),
Point("F", 2, False, False, 50),
2024-01-17 18:14:00 +00:00
]
point = Point("T", 4, True, False)
K = 4
2024-01-17 20:30:48 +00:00
k_nearest = knn(point, neighbours)
average_sold = 0
for n in k_nearest:
average_sold += n.sold
average_sold = average_sold / K
logger.debug(average_sold)
print(f"Number of loaves to make: {int(round(average_sold, 0))}")