mirror of
https://github.com/onyx-and-iris/grokking-algorithms.git
synced 2025-01-18 08:40:52 +00:00
clean up repo.
add more notes
This commit is contained in:
parent
d552050f7e
commit
3fe14b8ac0
2
.gitignore
vendored
2
.gitignore
vendored
@ -160,3 +160,5 @@ cython_debug/
|
|||||||
#.idea/
|
#.idea/
|
||||||
|
|
||||||
words_alpha.txt
|
words_alpha.txt
|
||||||
|
|
||||||
|
tests/
|
5
chapter1/README.md
Normal file
5
chapter1/README.md
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
# Binary Search
|
||||||
|
|
||||||
|
Repeatedly split the array checking if value is greater or less than the mid point. Stop when the exact value is found.
|
||||||
|
|
||||||
|
It takes log N steps to reduce an array of size N to an array of size 1. Time complexity for this algorithm is `O(log N)`.
|
@ -30,11 +30,14 @@ SAMPLE_SIZE = 1000
|
|||||||
numbers = random.sample(range(LOWER, UPPER), SAMPLE_SIZE)
|
numbers = random.sample(range(LOWER, UPPER), SAMPLE_SIZE)
|
||||||
numbers.sort()
|
numbers.sort()
|
||||||
|
|
||||||
|
seen = set()
|
||||||
|
count = 0
|
||||||
result = None
|
result = None
|
||||||
while result is None:
|
while not result:
|
||||||
guess = random.randrange(LOWER, UPPER)
|
guess = random.randrange(LOWER, UPPER)
|
||||||
logger.debug(f"guess: {guess}")
|
if guess not in seen:
|
||||||
result = binary_search(numbers, guess)
|
count += 1
|
||||||
|
seen.add(guess)
|
||||||
|
result = binary_search(numbers, guess)
|
||||||
|
|
||||||
|
print(f"Found {guess} at index {result} after {count} attempts")
|
||||||
print(f"Found {guess} at index {result}.")
|
|
||||||
|
@ -1,7 +0,0 @@
|
|||||||
import math
|
|
||||||
|
|
||||||
num_steps = int(math.log2(128))
|
|
||||||
print(
|
|
||||||
f"A binary search would take maximum {num_steps} steps "
|
|
||||||
"to search a list of 128 items."
|
|
||||||
)
|
|
@ -1,7 +0,0 @@
|
|||||||
import math
|
|
||||||
|
|
||||||
num_steps = int(math.log2(128*2))
|
|
||||||
print(
|
|
||||||
f"A binary search would take maximum {num_steps} steps "
|
|
||||||
"to search a list of 256 items."
|
|
||||||
)
|
|
7
chapter2/README.md
Normal file
7
chapter2/README.md
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
# Selection Sort
|
||||||
|
|
||||||
|
We have to perform N swaps a total of N times. This takes N^N steps, therefore:
|
||||||
|
|
||||||
|
This algorithm has time complexity `O(N^2)`
|
||||||
|
|
||||||
|
Technically (`n – 1, n - 2 ... 2, 1` ~= N/2) swaps are performed but in BigO the constants are dropped.
|
12
chapter4/README.md
Normal file
12
chapter4/README.md
Normal file
@ -0,0 +1,12 @@
|
|||||||
|
# Recursion
|
||||||
|
|
||||||
|
Recursive functions must have both:
|
||||||
|
|
||||||
|
- one or more base cases
|
||||||
|
- a recursive case
|
||||||
|
|
||||||
|
The base cases are required to ensure the recursion stops when meeting a condition
|
||||||
|
|
||||||
|
The recursive case adds functions onto the call stack and completes each one top down.
|
||||||
|
|
||||||
|
Note. Quicksort should be implemented using a random pivot to ensure average runtimes.
|
@ -32,10 +32,14 @@ SAMPLE_SIZE = 1000
|
|||||||
numbers = random.sample(range(LOWER, UPPER), SAMPLE_SIZE)
|
numbers = random.sample(range(LOWER, UPPER), SAMPLE_SIZE)
|
||||||
numbers.sort()
|
numbers.sort()
|
||||||
|
|
||||||
|
seen = set()
|
||||||
|
count = 0
|
||||||
result = None
|
result = None
|
||||||
while result is None:
|
while result is None:
|
||||||
guess = random.randrange(LOWER, UPPER)
|
guess = random.randrange(LOWER, UPPER)
|
||||||
logger.debug(f"guess: {guess}")
|
if guess not in seen:
|
||||||
result = binary_search(numbers, 0, len(numbers) - 1, guess)
|
count += 1
|
||||||
|
seen.add(guess)
|
||||||
|
result = binary_search(numbers, 0, len(numbers) - 1, guess)
|
||||||
|
|
||||||
print(f"Found {guess} at index {result}.")
|
print(f"Found {guess} at index {result} after {count} attempts.")
|
||||||
|
9
chapter6/README.md
Normal file
9
chapter6/README.md
Normal file
@ -0,0 +1,9 @@
|
|||||||
|
# Breadth-First Search
|
||||||
|
|
||||||
|
Can tell you if there's a path between A and B and will find the shortest.
|
||||||
|
|
||||||
|
In these examples, 1st degree Mango sellers are found before 2nd degree, 2nd before 3rd and so on.
|
||||||
|
|
||||||
|
Visted nodes should be stored in a set to ensure no infinite loops.
|
||||||
|
|
||||||
|
Running time for BFS on a directed graph: `O(V + E`) where V = vertices, E = edges.
|
@ -2,4 +2,4 @@
|
|||||||
|
|
||||||
- Dijkstra's algorithm works when all weights are non-negative
|
- Dijkstra's algorithm works when all weights are non-negative
|
||||||
- If there are negative weights use Bellman-Ford.
|
- If there are negative weights use Bellman-Ford.
|
||||||
- Priority queue + min heap is optimal when compared to a function that operates on a list.
|
- The book demonstrates a function that operates on a list. Priority queue + min heap added for completeness.
|
||||||
|
@ -1,10 +0,0 @@
|
|||||||
import heapq
|
|
||||||
|
|
||||||
customers = []
|
|
||||||
heapq.heappush(customers, (2, "Harry"))
|
|
||||||
heapq.heappush(customers, (3, "Charles"))
|
|
||||||
heapq.heappush(customers, (1, "Riya"))
|
|
||||||
heapq.heappush(customers, (4, "Stacy"))
|
|
||||||
|
|
||||||
while customers:
|
|
||||||
print(heapq.heappop(customers))
|
|
@ -1,14 +0,0 @@
|
|||||||
customers = []
|
|
||||||
customers.append((2, "Harry")) # no sort needed here because 1 item.
|
|
||||||
customers.append((3, "Charles"))
|
|
||||||
customers.sort(reverse=True)
|
|
||||||
# Need to sort to maintain order
|
|
||||||
customers.append((1, "Riya"))
|
|
||||||
customers.sort(reverse=True)
|
|
||||||
# Need to sort to maintain order
|
|
||||||
customers.append((4, "Stacy"))
|
|
||||||
customers.sort(reverse=True)
|
|
||||||
|
|
||||||
while customers:
|
|
||||||
print(customers.pop(0))
|
|
||||||
# Will print names in the order: Stacy, Charles, Harry, Riya.
|
|
@ -1,12 +0,0 @@
|
|||||||
from queue import PriorityQueue
|
|
||||||
|
|
||||||
customers = (
|
|
||||||
PriorityQueue()
|
|
||||||
) # we initialise the PQ class instead of using a function to operate upon a list.
|
|
||||||
customers.put((2, "Harry"))
|
|
||||||
customers.put((3, "Charles"))
|
|
||||||
customers.put((1, "Riya"))
|
|
||||||
customers.put((4, "Stacy"))
|
|
||||||
|
|
||||||
while customers:
|
|
||||||
print(customers.get())
|
|
Loading…
Reference in New Issue
Block a user