mirror of
https://github.com/onyx-and-iris/grokking-algorithms.git
synced 2025-01-18 16:50:53 +00:00
53 lines
1.1 KiB
Python
53 lines
1.1 KiB
Python
import logging
|
|
from dataclasses import dataclass
|
|
|
|
import numpy as np
|
|
|
|
logging.basicConfig(level=logging.DEBUG)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@dataclass
|
|
class Point:
|
|
identifier: str
|
|
weather: int
|
|
is_weekend: bool
|
|
is_game_on: bool
|
|
sold: int = 0
|
|
distance: int = 0
|
|
|
|
@property
|
|
def array(self):
|
|
return np.array([self.weather, int(self.is_weekend), int(self.is_game_on)])
|
|
|
|
|
|
def knn(point: Point, neighbours):
|
|
for neighbour in neighbours:
|
|
neighbour.distance = np.linalg.norm(point.array - neighbour.array)
|
|
logger.debug(f"{neighbour.identifier}: {neighbour.distance}")
|
|
|
|
return sorted(neighbours, key=lambda x: x.distance)[:K]
|
|
|
|
|
|
neighbours = [
|
|
Point("A", 5, True, False, 300),
|
|
Point("B", 3, True, True, 225),
|
|
Point("C", 1, True, False, 75),
|
|
Point("D", 4, False, True, 200),
|
|
Point("E", 4, False, False, 150),
|
|
Point("F", 2, False, False, 50),
|
|
]
|
|
|
|
point = Point("T", 4, True, False)
|
|
K = 4
|
|
|
|
k_nearest = knn(point, neighbours)
|
|
|
|
total = 0
|
|
for n in k_nearest:
|
|
total += n.sold
|
|
average = total / K
|
|
|
|
logger.debug(average)
|
|
print(f"Number of loaves to make: {int(round(average, 0))}")
|